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Section A

1. The daughter nucleus of Po210 (after the alpha decay) is Pb206. The
daughter nucleus will get a recoil energy. One simple way to get the recoil
energy is to use the difference between the total decay energy (i.e. the Qα-
value, from the table of isotopes, 5407.46 keV) and the alpha energy (from
the nuclide chart 5.30438 keV). The difference is 103.2 keV. This energy
is the recoil energy of the daughter nucleus (Pb206). As an alternative,
we can calculate the recoil energy by using the conservation of momenum
as a starting point:

p(α) = p(Pb206) (1)
m(α) · vα = m(Pb206) · v(Pb206) (2)

v(Pb206) = m(α)
m(Pb206)v(α) (3)

E(Pb206) = m(Pb206)v(Pb206)2

2 = (4)
m(α)2

m(Pb206)
v(α)2

2 = (5)
m(α)

m(Pb206)E(α) (6)

Qα = E(Pb206) + E(α); (7)
E(Pb206) = Qα

1+m(pb206)/m(α) ≈
5407.46
1+206/4 = 103 [keV ] (8)

We see that we get the same result. The recoil energy is 103 [keV].

2. We have, for the number, N , of nuclei, and the time, t:

N = N0e
−λt (9)

t = −
t1/2ln(0.43)

ln(2)
= 6977 [y], (10)

where we have used the ratio: N/N0 = 43/100 = 0.43, and the half-life,
t1/2, of C-14 (5730 [y]). We see that the tool is about 7000 years old.

3. The 1 MeV gamma photon can interact with the NaI scintillator in (mainly)
two ways; photo effect, and Compton scattering. In both cases, an elec-
tron within the NaI crystal will get a high kinetic energy (much higher
than the binding energy of the electrons). The electron will distribute
its energy to other electrons by Coulomb interaction. This will result in
atomic excitations in the NaI crystal. (In the specific case of NaI, so-called
exitons, i.e. electon-hole pairs, will be formed, travelling over the crystal
until they find an impurity or dopant.) When the excited atomic struc-
ture is de-excited (by electrons falling into levels of lower energy), light
will be emitted. If the matrial is transparent, this light will escape the
scintillator crystal. Many light photons will be emitted for each detected
gamma photon.



In order to transform the light into an electric pulse, we need some kind of
converted outside of the scintillator. A common method is to use a photo-
multiplier. The incoming light photon transfers its energy to an electron
(photo-electric effect), the electron is accelerated in an electric field, hits
a metalic plate and releases a number of electrons. The released electrons
are then accelerated in a series of steps (typically about 10), until a strong
enough electric (charge) puls is created.

Other converters is also used, e.g. PIN-diods.

4. The effective dose, HE , is written like this:

HE =
∑
T

WT ·HT , (11)

where WT is the tissue weighting factor for the tissue T and HT is the
dose equivalent for the tissue T . Here, we have only one tissue/body part,
i.e. the brain, and we can get WT = 0.05 from a table. To calculate the
dose equivalent, H, we use:

H =
∑
R

WR ·DR, (12)

where WR is the radiation weighting factor. In this case we have only
neutrons, so there is only one term in the sum. In this case WR = 5,
(from table) since the neutrons have energy lower than 10 keV. DR is the
absorbed dose. To get it, we need to know how much a brain weighs, and
the table give us the value 1.5 kg. We now get the absorbed dose as:

D =
2.5 [J ]
1.5 [kg]

= 1.667 [Gy]. (13)

The effective dose is now:

HE = WT ·WR ·D = 0.05 · 5 · 1.667 ≈ 0.417 [Sv] (14)

We see that the effective dose is quite high.

5. 50 mSv.

6. From the table of isotopes we see that the only gamma energy of interest is
662 keV, and that it is emitted in 94.4% of the decays. A source of 10 mCi
emits gamma rays at a rate, R, of 0.944·10·10−3 ·3.7·1010 = 3.48·108 [s−1].
The effective thickess, d, of the detector is 6 cm, and the solid angle
fraction, fA is:

fA =
π32

4π402
=

9
6400

= 1.4 · 10−3. (15)

Using the values (for germanium) of µ/ρ (using the value at 600 keV),
and ρ from the NIST table, we get, for the total number of counts, T , per
second in the detector:

T = R·fA ·(1−e−µx) = 3.48·108 ·1.4·10−3 ·(1−e−0.07452·5.323·6) = 4.4·105.
(16)



7. By neutron absorption, 244Pu will first be transformed into 245Pu. By
β−-decay in two steps, the alpha-emitting nuclide 245Cm (halflife 8500
years) is created.
First beta-decay (10.5 hours halflife): from 245Pu to 245Am.
Second beta-decay (2.05 hours halflife): from 245Am to 245Cm.
In both beta decays, several excited states are populated, resulting in
radiation from gamma decay and conversion electrons.

8. The light nucleus 16O has a density of approximately 0.2 · 1018 kg/m3.
What is the approximate density of the heavy nucleus 235U?

Nuclear density is approximately constant over the whole range The ex-
perimentally verified formula for the radius of the nucleus can be used to
show this:

R = R0A
1/3 (17)

V = cR3 = cR3
0A (18)

ρ =
M

V
=

kA

cR3
0A

=
k

cR3
0

= b, (19)

where R0, k, c, and b, are constants. We see that the density is constant.
Therefore, 235U has the same density as 16O.

There are exceptions to this rule. Experiments measuring the density of
some very neutron-rich nuclei (so-called halo nuclei) have revealed a much
lower density than expected from the constant-density rule above.

9. From the NIST-tables, we get, for the Standard Nuclear emulsion; ρ =
3.815[g/cm3], and µ/ρ(60 keV ) = 3.693[cm2/g]. We now get:

I = I0e
−µx (20)

1
2

= e−µx (21)

ln(2) = µx (22)

x =
ln(2)
µ

=
ln(2)

3.815 · 3.693
= 0.0492[cm]. (23)

We see that approximately 0.5 mm is suitable for the film thickness.

10. From the nuclide chart, we get the present abundances and half-lives for
U-238 and U-235. We now get:

N = N0e
−ln(2)t/t1/2 (24)

N235

N238
=
N0,235e

−ln(2)t/t1/2(U235)

N0,238e
−ln(2)t/t1/2(U238)

(25)

0.007204
0.992742

= e−ln(2)t(1/t1/2(U238)−1/t1/2(U235)) (26)

ln

(
0.007204
0.992742

)
= ln(2)t

(
1

t1/2(U238)
− 1
t1/2(U235)

)
(27)

t =
1

ln(2)
· ln

(
0.007204
0.992742

)
· 1(

1
t1/2(U238) −

1
t1/2(U235)

) = (28)



=
1

ln(2)
· ln

(
0.007204
0.992742

)
· 1(

1
4.468·109[y] −

1
7.04·108[y]

) = (29)

= 5.94 · 109 [y]. (30)

where N0,235 and N0,238 are the (assumed equal) abundances of the two
isotopes at the time of Earth’s creation, and wher N238 N235 are the two
present abundances. We see that, with this simplified approach, we get
an age for the Earth of about 6 · 109 years. More detailed studies (using
various radioisotopes) find the age to be close to 4.5 · 109 years.



Section B

1. We have the following relation between number and activity:

A = −dN
dt

= λ ·N =
N · ln(2)
t1/2

(31)

N =
A · t1/2
ln(2)

(32)

Here, we have, per kg:

Nliver =
A · t1/2
ln(2)

=
0.55 · 10−12 · 3.7 · 1010 · 2.4 · 104 · 3600 · 24 · 365

ln(2)
= 2.2 · 1010 (33)

Nskeleton =
A · t1/2
ln(2)

=
0.22 · 10−12 · 3.7 · 1010 · 2.4 · 104 · 3600 · 24 · 365

ln(2)
= 8.9 · 109 (34)

With a skeleton mass of 10 kg, and a liver mass of 1.5 kg, we get the total
number, N , of Pu239 atoms in the body:

N = 2.2 · 1010 · 1.5 + 8.9 · 109 · 10 = (35)
= (3.3 · 1010)liver + (8.9 · 1010)skeleton = (36)
= (1.2 · 1011)total (37)

The total number of Pu239 atoms in the body is 1.2 · 1011.

We now calculate the dose for each organ, per year. Here, we can make the
approximation that only alpha particles contribute to the dose, since the
gamma photons have much lower energies (mainly 77 keV, as compared
to the Qα-value of 5.244 MeV), and have lower WR. We can take the full
Q− value since the recoiling daughter nucleus will also contribute to the
dose. We now get the absorbed dose by using the activity per kg for the
two organs:

Dliver =
AEt

m
= (38)

= 0.55 · 10−12 · 3.7 · 1010 · 5.244 · 106 · 1.602 · 10−19 · 3600 · 24 · 365 =(39)
= 5.39 · 10−7 [Gy] (40)

Dskel =
AEt

m
= (41)

= 0.22 · 10−12 · 3.7 · 1010 · 5.244 · 106 · 1.602 · 10−19 · 3600 · 24 · 365 =(42)
= 2.16 · 10−7 [Gy] (43)

The effective dose is found by muliplying the absorbed dose with the tissue
weighting factor, WT for each organ, and then summing up the organs,
and finally by muliplying with the radiation weighting factor, WR. Here,
WR is 20. WT is 0.05 for the liver. For the skeleton, it might not be
obvious which value in the table to use, but for this solution we use the
value of 0.01 (bone surface, e.g. disregarding the bone marrow. We now
have, for the effective dose, H:

H = WR · (Dliver ·WT (liver) +Dskeleton ·WT (bone) = (44)
20 · (5.39 · 10−7 · 0.05 + 2.16 · 10−7 · 0.01) = 5.8 · 10−7 [Sv] (45)



The effective dose is about 0.6µSv per year, i.e. a very small fraction of
the average dose received from other sources ( about 4 mSv).

2. Since the child suffers from radiation sickness, but still survives, we can
assume that the effective dose is around 1-2 Sv (this is the answer to the
first part of the problem). For the rest of the calculation, we assume that
the received effective dose is 1 Sv.

The nuclide Am241 decays by alpha emission, but the alpha particles will
be completely stopped by the plastic around the source. The daughter
nucleus (Np237) is however populated in several excited states that decay
by gamma emission. If we make the simplified assumption that all gamma
rays penetrate the plastic surrounding the source, we need only to consider
the absorption in the body tissue. The most intense gamma line in this
decay is 59.5 keV, but there are also other gamma energies. We consider,
for now, two populated states in the daughter nucleus Np237; the 59.5 keV
state (85.2% of decays) and the 103.0 keV state (12.8% of decays). For
the intensity (branching ratio) of the different gamma energies, we get:

59.5 [keV ] : 0.852 · 100
100+6.71 + 0.128 · 100

100+26.7+4 ·
100

100+6.71 = 0.89 (46)

43.4 [keV ] : 0.128 100
100+26.7+4 = 0.097 (47)

26.3 [keV ] : 0.852 · 6.71
100+6.71 + 0.128 · 100

100+26.7+4 ·
6.71

100+6.71 = 0.060(48)

33.2 [keV ] : 0.852 · 6.71
100+6.71 + 0.128 · 100

100+26.7+4 ·
6.71

100+6.71 + (49)

+0.128 4
100+26.7+4 = 0.064 (50)

69.8 [keV ] : 0.128 4
100+26.7+4 = 0.0039 (51)

103.0 [keV ] : 0.128 26.7
100+26.7+4 = 0.026 (52)

We continue by considering the absorption of this gamma energy in the
child’s body. Assuming a thickness of tissue (from the source to the body
surface) of 10 cm, we get the following absorption ratios (I/I0), for the
various energies involved:

59.5 [keV ] :
I

I0
= e−µx = e−(µ/rho)rhox = e−0.2048·1.06·10 = 0.11 (53)

42.7 [keV ] :
I

I0
= e−µx = e−(µ/rho)rhox = e−0.2688·1.06·10 = 0.058 (54)

26.3 [keV ] :
I

I0
= e−µx = e−(µ/rho)rhox = e−0.6·1.06·10 = 0.0017 (55)

33.2 [keV ] :
I

I0
= e−µx = e−(µ/rho)rhox = e−0.379·1.06·10 = 0.018 (56)

69.8 [keV ] :
I

I0
= e−µx = e−(µ/rho)rhox = e−0.19·1.06·10 = 0.13 (57)

103.0 [keV ] :
I

I0
= e−µx = e−(µ/rho)rhox = e−0.1693·1.06·10 = 0.17 (58)

(59)



where we have used the absorption coefficients for energies near the spec-
ified ones. Multiplying the energy with the branching ratio, Rb and with
the absorption ratio we get the average energy deposited (per decay):

59.5 [keV ] : (1− 0.11) · 0.89 · 59.5 = 47.1 [keV ] (60)
42.7 [keV ] : (1− 0.058) · 0.097 · 42.7 = 3.9 [keV ] (61)

26.3 [keV ] : (1− 0.0017) · 0.060 · 26.3 = 1.5 [keV ] (62)
33.2 [keV ] : (1− 0.018) · 0.064 · 33.2 = 2.1 [keV ] (63)
69.8 [keV ] : (1− 0.13) · 0.0039 · 69.8 = 2.4 [keV ] (64)

103.0 [keV ] : (1− 0.17) · 0.026 · 103.0 = 2.2 [keV ] (65)

The sum of these energies is 59 keV. We see now that we could perhaps
have made the approximation to use only the 59.5 keV gamma, this would
have given an error of about 20% (and our 10 cm assumtion will most
likely give a bigger error). With the calcuation above, we see that the
total energy deposited (by gamma) in the body, is 59 keV, for each decay.
Now we can calculate the activity. We know that the radiation weighting
factor for photons is 1, and we assume full-body exposure. Then, the
effective dose, D, can be written as:

D =
A · E · t
m

(66)

where A is the activity, E is the deposited energy per decay, t is the time,
and m is the mass. We now get the activity:

A =
D ·m
E · t

=
1 · 25

59 · 103 · 1.602 · 10−19 · 3600 · 24
= 3.06·1010 [Bq] = 0.83 Ci.

(67)
With the assumption of an effective dose of 1 Sv, the activity of the source
was 0.83 Ci. It is worth noting that the child would surely have died if this
would have been an open source at the same activity, since the high alpha
energy, and the weighting factor for alpha together would have increased
the dose by more than a factor of 1000.

3. The radiactive krypton isotope of concern is 85Kr (all other neutron rich
krypton isotopes had decayed to very small amounts by the time of the
gas release). Only the decay from the ground state of Kr85 should be
considered. Kr85 decays by beta minus, i.e. emitting beta electrons.
Only a very small percentage (less than 0.5%) populates an excited state
in Rb85. The main concern is therefore the beta electrons, with continous
electron energies from zero up to the Q-value 687 keV. If the gas was
inhaled, the electrons would then deposit their full energy inside the body
of the person.

The activity concentration cA would be:

cA =
45000
(103)3

= 4.5 ·10−5 [Ci/m3] = 4.5 ·10−8 [Ci/dm3] = 1665 [Bq] (68)

If we set the average electron energy to half the Q-value, i.e 344 keV, and
assume that the average lung volume is 3 dm3, we have, for 24 hours, a
dose D:



D =
AEt

m
=

1665 · 344 · 103 · 1.602 · 10−19 · 3600 · 24
70

= 1.13 · 10−7 [Gy]

(69)
for a person of 70 kg body mass. Electrons (WR = 1), and full body dose,
gives us an effective dose of 0.11 µSv. We note that the volume of gas
dilution (here 109 cubic metres), is very important for the result.

4. In this problem, we can rather easily neglect several sources, since they
will not contribute much to the final dose. For the activity we have

A = A0e
−tln(2)/t1/2 , (70)

where A0 is the original activity. Co60 has a half-life of 5.27 years. The
activity was measured 46 years ago. The activity today is then about
0.0024 times the original activity, e.f. 0.024 mCi. Co57 has a short half-life
of 272 days, and will have only a fraction of 0.00058 of the original activity
left. For Y88, the fraction left is below 10−7. All the above can therefore
be neglected directly. Sr90 is an open source, but emits (almost) only
beta electrons (and anti-neutrinos). The beta electrons will be completely
stopped by the iron box. The only two sources left to consider is Am241,
and Cs137. The alpha from Am241 will be stopped, since it is a closed
source. The Am241 source has, first of all, a much lower activity than the
Cs137 source. But, in addition, the strongest gamma line in Am241 is
only about 60 keV. This contributes very little to the final dose, not only
due to the low energy, but because the low energy gamma photons will
be rather effectively stopped by the iron box. So, according to the above
reasonling, we need only to consider Cs137. The beta electrons will be
stopped within the box, but the gamma photons will escape. The present
activity of the Cs137 source is:

A = A0e
−tln(2)/t1/2 = 10 · 10−3 · 3.7 · 1010 · e−ln(2)37/30.17 = 1.58 · 108 [Bq].

(71)

The problem is now reduced to calculating the absorption fraction, fbox, in
the iron (d1 = 0.2 cm), the absorption in the lab assistant ,fa, (assumed
average thicknes d2 = 25 cm), and the solid angle, fs. The absorption
coefficients should be taken near the gamma energy of the Cs137 source,
i.e. 662 keV.

fbox =
I

I0
= e−µx = e−0.077·7.84·0.2 = 0.89 (72)

fa =
I

I0
= e−µx = e−0.089·1.06·25 = 0.095 (73)

fs =
1.75 · 0.35

4π(82 + 52)
= 5.48 · 10−4 (74)

where we have assumed a 1.75 m tall and 0.35 m wide assistant. We can
now get the dose, D:

D =
AtEfbox(1− fa)fs

m
= ... = 3.0 · 10−6 [Gy]. (75)



where a mass of 70 kg is assumed for the lab assistant. We have not
considered the angle dependence on the thickness of the iron box but used
the 2 mm value directly. (Note! Since the absorption coefficient for iron
was not given in tha tables, the value for another metal can be used. If
the correct density is used, this will not affect the result much, since the
abs. coeff in the table is normalised for density). We have photons, and
full body exposure, so the final effective dose is: 3 [µSv]. to reduce the
dose by a factor of 10, we can (for example) put lead plates on the inner
or outer walls of the box. We have for the thickness, dPb:

I

I0
= 0.1 = e−11.34·0.1248·dPb (76)

dPb =
−ln(0.1)

0.1248 · 11.34
= 1.63 [cm] (77)

We see that lead walls with a thickness of 1.63 cm will reduce the dose
by a factor of 10. They can be attached on the outer or inner (if there is
space available) walls of the box.


