Homeworkproblems 2

Exercise 1:

Show that under a parity transformation a particle with angular momentum l and total spin j carries a parity $\pi=(-1)^{l}$.

Exercise 2: a) Find the eigenvalues and eigenvectors of the impulse operator in one dimension, i. e. $p_{x} \varphi(x)=k \varphi(x)$, where $p_{x}=\frac{\hbar}{i} \frac{d}{d x}$, within the range $0 \leq x \leq L$ and the boundary condition $\varphi(0)=\varphi(L)$.
b) The same for p_{x}^{2} with $\varphi(0)=\varphi(L)=0$.

Exercise 3: Write the unit operator (projector) corresponding to the Hilbert space spanned by the representation given by the eigenfunctions $\varphi(x)$ of the one-particle Hamiltonian

$$
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

where $V(x)=\infty$ for $x=0, V(x)=-V_{0}$ for $0<x \leq a$ and $V(x)=0$ for $x>a$. Assume that the wave function in the continuum is normalized to unity within the region $0<x \leq L$.

Exercise 4:

Evaluate the magnetic dipole moment (Schmidt value) corresponding to
a) A proton moving in an orbital $l=2, j=5 / 2$.
b) A neutron moving in an orbital $l=1, j=1 / 2$.

Exercise 5:

a) The magnetic dipole moments corresponding to the ground states of the nuclei ${ }^{17} F_{8}$ and ${ }^{41} S c_{20}$ are observed to be 4.72 and 5.93 , respectively. Which are the corresponding values of l and j ?.
b) Which values of l and j would have the ground states of ${ }^{17} O_{9}$ and ${ }^{41} C a_{21}$, for which the magnetic dipole moments are measured to be -1.83 and -1.59 , respectively?.

