Homeworkproblems 2

Exercise 1:

Show that under a parity transformation a particle with angular momentum l and total spin j carries a parity $\pi = (-1)^l$.

Exercise 2: a) Find the eigenvalues and eigenvectors of the impulse operator in one dimension, i. e. $p_x \varphi(x) = k\varphi(x)$, where $p_x = \frac{\hbar}{i} \frac{d}{dx}$, within the range $0 \le x \le L$ and the boundary condition $\varphi(0) = \varphi(L)$. b) The same for p_x^2 with $\varphi(0) = \varphi(L) = 0$.

Exercise 3: Write the unit operator (projector) corresponding to the Hilbert space spanned by the representation given by the eigenfunctions $\varphi(x)$ of the one-particle Hamiltonian

$$H = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x),$$

where $V(x) = \infty$ for x = 0, $V(x) = -V_0$ for $0 < x \le a$ and V(x) = 0 for x > a. Assume that the wave function in the continuum is normalized to unity within the region $0 < x \le L$.

Exercise 4:

Evaluate the magnetic dipole moment (Schmidt value) corresponding to

a) A proton moving in an orbital l = 2, j = 5/2.

b) A neutron moving in an orbital l = 1, j = 1/2.

Exercise 5:

a) The magnetic dipole moments corresponding to the ground states of the nuclei ${}^{17}F_8$ and ${}^{41}Sc_{20}$ are observed to be 4.72 and 5.93, respectively. Which are the corresponding values of l and j?.

b) Which values of l and j would have the ground states of ${}^{17}O_9$ and ${}^{41}Ca_{21}$, for which the magnetic dipole moments are measured to be -1.83 and -1.59, respectively?