Homeworkproblems 1

Exercise 1: Using the eigenvectors and eigenvalues of the Pauli matrix σ_z as a basis evaluate the eigenvalues and eigenvectors of σ_x and σ_y , where $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Exercise 2:

a) Why translating the system of coordinates by an amount $+\Delta \mathbf{r}$ the function $\Psi(\mathbf{r})$ becomes $\Psi(\mathbf{r} - \Delta \mathbf{r})$? (Eq. (8) of Chapter 1).

b) Show that the parity operator is Hermitian.

Exercise 3:

Show that if the operators A and B conmute, then they have common eigenvectors.

Exercise 4:

a) Show that $|j_1 j_2 JM \rangle = (-1)^{j_1 + j_2 - J} |j_2 j_1 JM \rangle$ b) Evaluate the following Clebsh-Gordan coefficients: $\mathbf{i}) < j + 1/2 \ j - 1/2 \ 1/2 \ 1/2 \ 1/2 \ j >, \\ \mathbf{ii}) < j + 1/2 \ j + 1/2 \ 1/2 - 1/2 \ j >. \\ \mathbf{iii}) < j - 1/2 \ j - 1/2 \ 1/2 \ 1/2 \ 1/2 \ 1/2 \ j > . \\ \mathbf{iii}) < j - 1/2 \ j - 1/2 \ 1/2$ and iv) $\langle j - 1/2 \ j + 1/2 \ 1/2 \ - 1/2 \ j \rangle$.

Exercise 5:

a) Which is the relation between m_1, m_2 and m, and between j_1, j_2 and j in the Clebsh-Gordon coefficient $CG = \langle j_1 m_1 j_2 m_2 | jm \rangle$.

b) Show that $CG = \langle jmjm|JM \rangle = 0$ if 2j - J is odd. Which is the value of J if j = 1/2?. c) Show that $\left\{\frac{9}{2} \ 1 \ \frac{7}{2} \\ \frac{5}{2} \ 2 \ \frac{3}{2}\right\} = 0$ and $\left\{\frac{2}{2} \ 1 \ 1 \\ 3 \ 2 \ 2\right\} = 0$.

Short Algebraic Table of the 3-j Symbols

$$\begin{pmatrix} j_1 & j_2 & j_3 \\ 0 & 0 & 0 \end{pmatrix} = (-1)^{J/2} \left[\frac{(J-2j_1)!(J-2j_2)!(J-2j_3)!}{(J+1)!} \right]^{1/2} \frac{(\frac{1}{2}J)!}{(\frac{1}{2}J-j_1)!(\frac{1}{2}J-j_2)!(\frac{1}{2}J-j_3)!}$$

where $J = j_1 + j_2 + j_3$ is even.

$$\begin{pmatrix} j & j & 0 \\ m & -m & 0 \end{pmatrix} = (-1)^{j-m} \left[\frac{1}{2j+1} \right]^{1/2}$$

$$\begin{pmatrix} j+\frac{1}{2} & j & \frac{1}{2} \\ m & -m-\frac{1}{2} & \frac{1}{2} \end{pmatrix} = (-1)^{j-m-\frac{1}{2}} \left[\frac{j-m+\frac{1}{2}}{(2j+2)(2j+1)} \right]^{1/2}$$

$$\begin{pmatrix} j+1 & j & 1 \\ m & -m-1 & 1 \end{pmatrix} = (-1)^{j-m-1} \left[\frac{(j-m)(j-m+1)}{(2j+3)(2j+2)(2j+1)} \right]^{1/2}$$

$$\begin{pmatrix} j+1 & j & 1 \\ m & -m & 0 \end{pmatrix} = (-1)^{j-m-1} \left[\frac{2(j+m+1)(j-m+1)}{(2j+3)(2j+2)(2j+1)} \right]^{1/2}$$

$$\begin{pmatrix} j & j & 1 \\ m & -m-1 & 1 \end{pmatrix} = (-1)^{j-m} \left[\frac{2(j-m)(j+m+1)}{(2j+2)(2j+1)(2j)} \right]^{1/2}$$

$$\begin{pmatrix} j & j & 1 \\ m & -m & 0 \end{pmatrix} = (-1)^{j-m} \frac{2m}{[(2j+2)(2j+1)(2j)]^{1/2}}$$