Homeworkproblems 1

Exercise 1: Using the eigenvectors and eigenvalues of the Pauli matrix σ_{z} as a basis evaluate the eigenvalues and eigenvectors of σ_{x} and σ_{y}, where $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and $\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

Exercise 2:

a) Why translating the system of coordinates by an amount $+\Delta \mathbf{r}$ the function $\Psi(\mathbf{r})$ becomes $\Psi(\mathbf{r}-\boldsymbol{\Delta r})$? (Eq. (8) of Chapter 1).
b) Show that the parity operator is Hermitian.

Exercise 3:

Show that if the operators A and B conmute, then they have common eigenvectors.

Exercise 4:

a) Show that $\left|j_{1} j_{2} J M>=(-1)^{j_{1}+j_{2}-J}\right| j_{2} j_{1} J M>$
b) Evaluate the following Clebsh-Gordan coefficients:
i) $<j+1 / 2 j-1 / 21 / 21 / 2 \mid j j>$, ii) $<j+1 / 2 j+1 / 21 / 2-1 / 2 \mid j j>$. iii) $<j-1 / 2 j-1 / 21 / 21 / 2 \mid j j>$ and iv) $<j-1 / 2 j+1 / 21 / 2-1 / 2 \mid j j>$.

Exercise 5:

a) Which is the relation between m_{1}, m_{2} and m, and between j_{1}, j_{2} and j in the Clebsh-Gordon coefficient $C G=<j_{1} m_{1} j_{2} m_{2} \mid j m>$.
b) Show that $C G=<j m j m \mid J M>=0$ if $2 j-J$ is odd. Which is the value of J if $j=1 / 2$? .
c) Show that $\left\{\begin{array}{lll}\frac{9}{2} & 1 & \frac{7}{2} \\ \frac{5}{2} & 2 & \frac{3}{2}\end{array}\right\}=0$ and $\left\{\begin{array}{lll}2 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 2 & 2\end{array}\right\}=0$.

Short Algebraic Table of the 3-j Symbols

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & j_{3} \\
0 & 0 & 0
\end{array}\right)=(-1)^{J / 2}\left[\frac{\left(J-2 j_{1}\right)!\left(J-2 j_{2}\right)!\left(J-2 j_{3}\right)!}{(J+1)!}\right]^{1 / 2} \frac{\left(\frac{1}{2} J\right)!}{\left(\frac{1}{2} J-j_{1}\right)!\left(\frac{1}{2} J-j_{2}\right)!\left(\frac{1}{2} J-j_{3}\right)!}
$$

where $J=j_{1}+j_{2}+j_{3}$ is even.

$$
\begin{aligned}
\left(\begin{array}{ccc}
j & j & 0 \\
m & -m & 0
\end{array}\right) & =(-1)^{j-m}\left[\frac{1}{2 j+1}\right]^{1 / 2} \\
\left(\begin{array}{ccc}
j+\frac{1}{2} & j & \frac{1}{2} \\
m & -m-\frac{1}{2} & \frac{1}{2}
\end{array}\right) & =(-1)^{j-m-\frac{1}{2}}\left[\frac{j-m+\frac{1}{2}}{(2 j+2)(2 j+1)}\right]^{1 / 2} \\
\left(\begin{array}{ccc}
j+1 & j & 1 \\
m & -m-1 & 1
\end{array}\right) & =(-1)^{j-m-1}\left[\frac{(j-m)(j-m+1)}{(2 j+3)(2 j+2)(2 j+1)}\right]^{1 / 2} \\
\left(\begin{array}{ccc}
j+1 & j & 1 \\
m & -m & 0
\end{array}\right) & =(-1)^{j-m-1}\left[\frac{2(j+m+1)(j-m+1)}{(2 j+3)(2 j+2)(2 j+1)}\right]^{1 / 2} \\
\left(\begin{array}{ccc}
j & j & 1 \\
m-m-1 & 1
\end{array}\right) & =(-1)^{j-m}\left[\frac{2(j-m)(j+m+1)}{(2 j+2)(2 j+1)(2 j)}\right]^{1 / 2} \\
\left(\begin{array}{ccc}
j & j & 1 \\
m & -m & 0
\end{array}\right) & =(-1)^{j-m} \frac{2 m}{[(2 j+2)(2 j+1)(2 j)]^{1 / 2}}
\end{aligned}
$$

