Homeworkproblems 1

Exercise 1: Using the eigenvectors and eigenvalues of the Pauli matrix o, as a basis evaluate the
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Exercise 2:

a) Why translating the system of coordinates by an amount +Ar the function ¥(r) becomes ¥(r—Ar)?
(Eq. (8) of Chapter 1).
b) Show that the parity operator is Hermitian.

eigenvalues and eigenvectors of o, and oy, where o, = <(1) é),

Exercise 3:
Show that if the operators A and B conmute, then they have common eigenvectors.

Exercise 4:

a) Show that [j;joJ M >= (=1)1+52=7|jy5, JM >

b) Evaluate the following Clebsh-Gordan coefficients:

1) <j4+1/2j-1/21/21/2]5 5 >,ii) < j+1/2j+1/21/2-1/2|j j >. iil) < j—1/2j-1/21/21/2|5 j >
and iv) <j—1/2j+1/21/2 —1/2]j j >.

Exercise 5:

a) Which is the relation between my,mo and m, and between ji,js and j in the Clebsh-Gordon
coefficient CG =< jymyjoma|jm >.

b) Show that CG =< jmjm|JM >
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where J = j1 + j2 + js is even.
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