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CHAPTER 3

Magnetic resonances in nuclei

Charge particles in a magnetic field. Time dependent magnetic fields. Time-dependent
perturbation treatment. Rabi formula. Magnetic Resonance Imaging (MRI)

Charge particles in a magnetic field

Assume a nucleon in the presence of a magnetic field carrying only its intrinsic
angular momentum, i. e. its 1/2-spin. This would happen is the nucleon is trapped
within the region where the experiment is performed. For instance, a proton in
some molecules forming a cristal, or a proton in a molecule of human tissue, which
is largerly composed of water with two hydrogen atoms (where the nucleus is the
proton itself) in each H2O (water) molecule.

Assuming also that the magnetic field applied externally has the form

B = B0k

where B0 is constant and k is the unit vector in the z-direction, the Hamiltonian is

H = −µ ·B = −µzB0 (1)

where the magnetic moment is defined by,

µ =
gq

2mc
s (2)

In contrast to what we presented above, the magnetic moment is now defined with
dimensions. This is an unfortunate change of notation. We keep the notation
used in each field. In Nuclear Physics the Hamiltonian is as in Eq. (2), while in the
applications of magnetic resonances to be analyzed here we will use the Hamiltonian
(1).

Since only the intrinsic spin of the particle is considered, the g-factor in Eq. (2)
is as the gs factor above, but for clarity of presentation we give them again here. In
the cases of interest in the applications the g-factors are

g =


2.00 electron
5.58 proton
−3.82 neutron

As before, q is the charge of the particle (q = −e for electron) and s = (sx, sy, sz)
are the Pauli matrices given by,

sx =
~
2

(
0 1
1 0

)
; sy =

~
2

(
0 −i
i 0

)
; sz =

~
2

(
1 0
0 −1

)
The Hamiltonian becomes,

H = −µ ·B = − gq

2mc
B0s · k = ω0sz =

ω0~
2

(
1 0
0 −1

)



2

where
ω0 = − gq

2mc
B0

and the eigenvalues are,

H

(
1
0

)
=
ω0~
2

(
1
0

)
; H

(
0
1

)
= −ω0~

2

(
0
1

)
There are two stationary (i.e. time independent) states with energies

E± = ±ω0~
2

If the particle is in the state +, it will not decay unless a perturbation disturbs it.
When it decays a photon with energy E+−E− = ~ω0 will be emitted which can be
measured with great precision, thus allowing one to determine precisely quantities
like the g-factor.

Time dependent magnetic fields

A convenient way to perturb the system is by applying a weak and time-dependent
magnetic field in the x-direction. Rabi chose for this purpose the form B1 cosωt ix.
The perturbation will then vary from −B1 to +B1 as the time increases. The hope
is that at a certain value of ω the transition will take place. Notice that B1 has to
be very small in comparison to B0 in order not to destroy the spectrum determined
by B0 (i.e. the levels E±). The problem is then to solve the Hamiltonian

H = ω0sz −
gqB1

2mc
cosωtsx

with ω1 = −gqB1

2mc
, one gets

H =
ω0~
2

(
1 0
0 −1

)
+
ω1~
2

cosωt

(
0 1
1 0

)
=

~
2

(
ω0 ω1 cosωt

ω1 cosωt −ω0

)
where |ω1| � |ω0|. One has to use the time-dependent Schrödinger equation, i.e.

HΨ(t) = i~
dΨ(t)

dt

Time-dependent perturbation treatment

Since B1 is very small the solution Ψ(t) should not be very different from the
solution corresponding to B1 = 0. We will therefore solve first the case B1 = 0, i. e.

~
2

(
ω0 0
0 −ω0

)(
a(t)
b(t)

)
= i~

(
ȧ(t)

ḃ(t)

)
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where ȧ(t) =
da(t)

dt
. One thus has

~
2
ω0a(t) = i~

da(t)

dt

−~
2
ω0b(t) = i~

db(t)

dt

=⇒

 a(t) = a(0) e−iω0t/2

b(t) = b(0) eiω0t/2

The general case is

~
2

(
ω0 ω1 cosωt

ω1 cosωt −ω0

)(
a(t)
b(t)

)
= i~

(
ȧ(t)

ḃ(t)

)
since |ω1| � |ω0|, one proposes as solution(

a(t)
b(t)

)
=

(
e−iω0t/2 c(t)
eiω0t/2 d(t)

)
which contains the main term explicitly.

The Schrödinger equation becomes

~
2

(
ω0 ω1 cosωt

ω1 cosωt −ω0

)(
e−iω0t/2 c(t)
eiω0t/2 d(t)

)
= i~

(
−iω0

2
e−iω0t/2c(t) + e−iω0t/2ċ(t)

iω0

2
eiω0t/2d(t) + eiω0t/2ḋ(t)

)
(3)

with cosωt =
(
eiωt/2 + e−iωt/2

)
/2,

i

(
ċ(t)

ḋ(t)

)
=
ω1

4

( [
ei(ω0+ω)t + ei(ω0−ω)t

]
d(t)[

e−i(ω0−ω)t + e−i(ω0+ω)t
]
c(t)

)
The idea is to change ω in the perturbation term B1 cosωt such that ~ω0 ≈ ~ω.
Since ω0 is large, the highly oscillating functions e±i(ω0+ω)t can be neglected. One
thus gets 

iċ(t) =
ω1

4
ei(ω0−ω)td(t)

iḋ(t) =
ω1

4
e−i(ω0−ω)tc(t)

(4)

which is a coupled set of two first order differential equations. To solve it one
transforms it in a second order differential equation as follows.

ic̈(t) =
ω1

4
ei(ω0−ω)t

[
i(ω0 − ω)d(t) + ḋ(t)

]
id̈(t) =

ω1

4
e−i(ω0−ω)t

[
− i(ω0 − ω)c(t) + ċ(t)

]
and replacing c(t) and ċ(t) from Eq. (4)

id̈(t) =
ω1

4
e−i(ω0−ω)t

[
− i(ω0 − ω)

4i

ω1

ei(ω0−ω)tḋ(t) +
ω1

4i
ei(ω0−ω)td(t)

]
= (ω0 − ω)ḋ(t)− i

(ω1

4

)2

d(t)
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d̈(t) + i(ω0 − ω)ḋ(t) +
(ω1

4

)2

d(t) = 0 (5)

which has the solution

d(t) = Ae−i(ω0−ω)t/2 sin Ωt, Ω =
1

2

√
(ω0 − ω)2 + (ω1/2)2 (6)

where A is a constant which is determined by the normalization condition, i.e.

(
c∗(t), d∗(t)

)( c(t)
d(t)

)
=
∣∣c(t)∣∣2 +

∣∣d(t)
∣∣2 = 1

One proceeds in the same fashion with c(t) to obtain

c(t) = 2A
ω0 − ω1

ω1

ei(ω0−ω)t/2

(
− sin Ωt− i

√
1 +

ω2
1

4(ω0 − ω)2
cos Ωt

)

Rabi formula

We have assumed that before the perturbation the system is in the state (+),
i.e.

c(0) = 1; d(0) = 0∣∣c(0)
∣∣2 +

∣∣d(0)
∣∣2 =

∣∣c(0)
∣∣2 = 1

From
∣∣c(0)

∣∣2 = 1, and after some algebra, one gets,

∣∣A∣∣2 =
(ω1/2)2

(ω0 − ω)2 + (ω1/2)2

and the probability that the transition takes place, i.e. that the system is in the
state (−) is ∣∣d(t)

∣∣2 =
(ω1/2)2

(ω0 − ω)2 + (ω1/2)2
sin2 Ωt (7)

and a resonance occurs when ω = ω0

Eq. (7) is the Rabi’s formula

Magnetic Resonance Imaging (MRI)

One sees that

(ω1/2)2

(ω0 − ω)2 + (ω1/2)2

~2

~2
=

(Γ1/2)2

(E0 − E)2 + (Γ1/2)2

where E = ~ω0 is the resonance energy and Γ1 = ~ω1 the width.
In Fig. 1 the form of the signal resulting from this expression is shown.
According to the energy-time relation one has

Γ1T = ~
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E0

Γ

Signal

Figure 1: The resonant form of the signal as the energy E, corresponding to the
weak magnetic field B1, approaches the energy E0 induced by B0. The width of the
resonance is Γ.

where T is the mean life of the initial state (+), i.e.

T(+) =
~
Γ1

=
1

|ω1|
=

2mc

g|q|B1

if B1 = 0, T(+) =∞, i.e. the state does not decay

Magnetic Resonance Imaging (MRI)

The signal-energy plot shown in Fig. 1 has been used to investigate the inner
structure of materials. In particular, it is used in Medicine to image nuclei of atoms
inside the body. Quoting the Wikipedia site

http : //en.wikipedia.org/wiki/Magnetic resonance imaging
(where some details and farther references can be found)

An MRI machine uses a powerful magnetic field to align the magnetization of
some atoms in the body, and radio frequency fields to systematically alter the align-
ment of this magnetization. This causes the nuclei to produce a rotating magnetic
field detectable by the scanner and this information is recorded to construct an im-
age of the scanned area of the body. Strong magnetic field gradients cause nuclei
at different locations to rotate at different speeds. 3-D spatial information can be
obtained by providing gradients in each direction.

MRI provides good contrast between the different soft tissues of the body, which
make it especially useful in imaging the brain, muscles, the heart, and cancers com-
pared with other medical imaging techniques such as computed tomography (CT) or
X-rays. Unlike CT scans or traditional X-rays, MRI uses no ionizing radiation.

This last is a very important point, since it implies that no damage of the human
tissue is associated with MRI.
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In all applications of Magnetic Resonance Imaging one uses SI units and intro-
duces the Bohr magneton

µB =
q~

2mc
(8)

In these units the frequency becomes

ω0 =
gqB0

2mc
=
gµBB0

~
(9)

As already mentioned, for electrons it is g = 2.00 and µB = 5.79×10−5eV/T, where
the unit Tesla is 1T = 104gauss.

For protons g = 5.58 (as also already mentioned) and µB = 3.15 × 10−8eV/T.
Remember ~c ≈ 200MeVfm. The precise value of ~ is ~ = 6.58× 10−22MeVsec


