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CHAPTER 1

Review of basic Quantum Mechanics concepts

Introduction. Hermitian operators. Physical meaning of the eigenvectors and
eigenvalues of Hermitian operators. Representations and their use. Non-Hermitian
and Unitary Operator: symmetries and conservation laws. Sum of angular mo-
menta. 3j, 6j and 9j symbols.

Introduction

In Quantum Mechanics the states are represented by vectors in an abstract space
called Hilbert space. Thus, a state α is a vector which, in Dirac notation, is writen as
|α >. As we will see below, this vector can be associated either to a function Ψα(�r),
which is regular and square integrable, or to a one-dimensional matrix (spinor). In
the first case the metric of the space is defined by the scalar product in the region V

of the three-dimensional (physical) space where the functions are square integrable.
Usually V includes the whole space. Thus, the scalar product between the vectors
|α > and |β > is defined by

�β|α� =

�

V

d�r Ψ∗
β(�r)Ψα(�r)

For the case of an N-dimensional spinor the vector α is associated to the one-
dimensional matrix given by 
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αN





and the scalar product between the vectors α and β is given by

�β|α� =
�

β
∗
1 , β

∗
2 , ., ., ., β

∗
N

�
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α2

.

.

.

αN




=

N�

i=1

β
∗
i αi

The vector < α| is called ”bra” and |α > is called ”ket”. The scalar produc < α|β >

is called ”bracket”.
One sees from the definition of the scalar product that it is < α|β >=< β|α >

∗.
Therefore the norm Nα of a vector |α >, i. e. Nα =

�
< α|α > is a real number. In

Quantum Mechanics N
2
α is the probability of measuring the system in the state α.

Since the system exists, this probability should be N
2
α = 1. Notice that we assume

that the system is stationary, that is all processes are time-independent. Therefore
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if the system is in the state α, it will remain there for ever. Below we will describe
this system in terms of a set of vectors |n >. The probability of measuring the
system in the state |n > is | < α|n > |2.

Hermitian operators

An operator A acting upon a vector |α� in the Hilbert space converts this vector
into another one |β�. It is important to point out that the Hilbert space we consider
is closed, that is all vectors belong to the space. In the applications that we will
encounter in the course of these lectures only small subspaces of the total Hilbert
space (which usually has infinite dimension) will be chosen. In such a case the
operator Â may bring |α > to a vector |β > lying outside the subspace. But we will
not treat such situations here. In other words, the systems we will treat are always
closed.

The relation between |α > and |β > is Â|α� = |β�. The corresponding adjoint
operator Â

+ is defined by �β| = �α|Â†. Taking the scalar product with another
vector γ one gets, �γ|Â|α� = �γ|β� = �β|γ�∗ = �α|Â†|γ�∗. The operator Â is called
Hermitian if

Â
† = Â Hermitian

The eigenvalues a and eigenvectors |α > of the operator Â satisfy the equation

Â|α� = a|α�

and for the adjoint operator A
+ it is,

�α|Â† = a
∗�α|

If the operator Â is Hermitian one has

�β|Â|α� = �β|Â†|α�

If, in addition, |α > and |β > are eigenvectors of Â, then one gets

a�β|α� = b
∗�β|α� (1)

Which implies that �
|α� �= |β�; �β|α� = 0
|α� = |β�; a real

(2)

That is, the eigenvectors of a Hermitian operator form an orthogonal set and the
corresponding eigenvalues are real. These two properties play a fundamental role in
Quantum Mechanics, as we repeatly will see in the course of these lectures.

Physical meaning of the eigenvectors and eigenvalues of Hermitian
operators

The most important property of Hermitian operators in Quantum Mechanics is
that their eigenvalues are real. This property has allowed one to interpret these
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operators as the devices used to measure physical quantities. One postulates that
the Hermitian operator represents the apparatus used to measure a physical quantity
and the corresponding eigenvalues are all the possible values that one can obtain
from the measurement. In other words, only those values are allowed and nothing
else. This is a radical departure from Classical Mechanics, where one can give any
value one wishes to all physical quantities (for instance the energy).

The eigenvectors of Hermitian operators are the corresponding wave functions
that allow one to evaluate all probabilities, in particular transition probabilities.
Besides, they play a fundamental role in Quantum Mechanics. Thus, normalizing
the eigenvectors in Eq. (1) as �α|α� = 1 and from Eq. (2) one finds that they satisfy

�α|β� = δαβ (3)

which means that they form an orthonormal set of vectors in the Hilbert space.
They can be used as a basis to describe any vector belonging to the space. In a
more rigorous statement one can say that the eigenvectors of an Hermitian operator
spann the Hilbert space on which the operator acts. To see the great importance of
this property, assume a Hilbert space of dimension N and a Hermitian operator Â

acting on this space such that,

Â|αi� = ai|αi�, i = 1, 2, · · · , N

Any vector |v� in the space spanned by the basis
�
|α�

�
can be written as

|v� =
N�

i=1

ci|αi�

From Eq. (3) one obtains
ci = �αi|v� (4)

The numbers �αi|v� are called ”amplitudes”. If the vector |v > represents a physical
(quantum) state, then the amplitudes have to obey the normality relation given by,

�v|v� =
N�

i=1

ci�v|αi� =
N�

i=1

�v|αi�∗�v|αi� =
N�

i=1

|�v|αi�|2 = 1

From Eq. (4) the vector |v� can be written as,

|v� =
N�

i=1

�αi|v�|αi� =
N�

i=1

|αi��αi|v�

which shows that
N�

i=1

|αi��αi| = Î (5)

This is the projector into the space spanned by the set
�
|α�

�
. We will use the

projector often in these lectures.
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Representations and their use

One of the most important problems in theoretical nuclear physics is to evaluate
the eigenvectors and eigenvalues of a given operator B̂. That is, to find the vectors
β and numbers b defined by

B̂|β� = b|β�

This is called the ”Eigenvalue problem”. To evaluate the eigenvectors and eigenval-
ues one first chooses a basis, that is a set of orthonormal vectors

�
|α�

�
which are

usually provided by the diagonalization of a Hermitian operator. This basis is also
called ”Representation”, for reason which will become clear below. If the number
of vectors forming the orthonormal set

�
|α�

�
, i. e. the dimension of the basis, is N

one has, applying Eq. (5)

B̂|β� = b|β� = B̂

N�

i=1

|αi��αi|β� =⇒
N�

i=1

�
�αj|B̂|αi� − bδij

�
�αi|β� = 0

which provides the equation to evaluate the amplitudes as,

N�

i=1

�
�αj|B̂|αi� − bδij

�
�αi|β� = 0 (6)

This is a set of N×N homogeneous linear equations in the N unknowns amplitudes
�αi|β�. Besides the trivial solution �αi|β�=0 for all i, one finds the physical solutions
by requiring that the equations (6) are linearly dependent upon each other. This
occurs if the corresponding determinant vanishes. That is

���
����αj|B̂|αi� − bδij

���
��� = 0

which allows one to calculate N values of b. To calculate the amplitudes one disre-
gard one of the Eqs. (6) and the remaining N − 1 equations plus the normalization
condition given by

N�

i=1

|�αi|β�|2 = 1

give a non-linear N × N set of equations from which the amplitudes �αi|β� are
extracted.

The set
�
|α�

�
can be a continuum set. An example of this is the eigenvectors

corresponding to the distance operator, i. e.

r̂|r� = r|r�

The operator r̂ represents the device used to measure the distance (a rule for in-
stance), |r� is the corresponding vector in the Hilbert space and r the length one
measures. Since

r̂ = r̂
†
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Figure 1: Potential that induces both discrete (bound) and continuum states.

one gets the projector as �
dr|r��r| = Î (7)

where, in spherical coordinates, it is r = (r, θ,ϕ) and dr = r
2dr sin θdθdϕ. One

cannot speak of a number of dimensions of this continuous basis, since it comprises
all real numbers (which cannot be labelled by integers). Therefeore one uses the
name ”representation” for the projector (7). In r-representation the eigenvalue
problem is

B̂|β� = b|β� = B̂

�
dr�|r���r�|β�

B̂

�
dr��r|r���r�|β� = b�r|β�

With �r|r�� = δ(r − r�) and Ψβ(r) = �r|β�, one gets

B̂Ψβ(r) = bΨβ(r)

and the matrix elements can readily be evaluated as,

�αj|B̂|αi� =

�
dr

�
dr��αj|r��r|B̂|r���r�|αi� =

�
drΨ∗

j(r)B̂Ψi(r)

There can be discrete and continuum states in some cases, as seen in Fig. 1. In
these cases the projector becomes,

Î =
N�

n=1

|n��n| +
�

dα|α��α|

where |n > (|α >) is a discrete (continuum) state.
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The orthonormalization condition now reads,

δ(r − r�) =
N�

n=1

Ψ∗
n(r)Ψn(r�) +

�
dαΨ∗

α(r)Ψα(r�)

Non-Hermitian and Unitary Operator: symmetries and conservation
laws

Operators are of a fundamental importance to describe transformations of the
system. We will analyse in this Lecture the cases of translations, rotations and
parity.

1.- Translation symmetry

The translation operator T̂ is defined by,

T̂ (∆r)|r� = |r + ∆r�

which applied to the vector |Ψ� gives,

T̂ (∆r)|Ψ� =

�
dr�T̂ (∆r)|r���r�|Ψ� =

�
dr�|r� + ∆r��r�|Ψ�

and, in r-representation, the translated function is

Ψt(r) = �r|T̂ (∆r)|Ψ� =

�
dr�δ(r − r� −∆r)�r�|Ψ� = Ψ(r −∆r) (8)

Since
�r|T̂ †(∆r)T̂ (∆r)|r� = �r + ∆r|r + ∆r� = 1

one obtains
T̂

†
T̂ = 1

which defines the operator T̂ as unitary.
The invariance of a wave function with respect to translations implies the con-

servation of the linear momentum, This can be seen by noticing that the time
dependence of an operator Â is given by

dÂ

dt
=

∂Â

∂t
+

i

� [H, Â] (9)

Assume a system for which

HΨn(x) = EnΨn(x)

If there is translation invariance, then

HΨn(x + ∆x) = EnΨn(x + ∆x)
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Making a Taylor expansion of Ψn one gets,

Ψn(x + ∆x) =
∞�

k=1

(∆x)k

k !

dkΨn(x)

dxk
=

∞�

k=1

1

k !

�
∆x

d

dx

�k

Ψn(x) = e∆x d
dx Ψn(x)

and defining the linear momentum operator in the usual fashion as,

px =
�
i

d

dx

one obtains,
Ψn(x + ∆x) = e

i
� ∆xpxΨn(x)

Therefore the translation operator is

T̂ (∆x) = e
i
� ∆xpx

and one has

HT̂ (∆x)Ψn(x) = HΨn(x + ∆x)

= EnΨn(x + ∆x)

= EnT̂ (∆x)Ψn(x) = T̂ (∆x)HΨn(x)

which implies,
[H, T̂ ] = 0

i. e.
[H, px] = 0

Since px is time independent it is ∂p̂x/∂dt =0 and from Eq. (9) one gets dp̂x/dt=0,
which means that the linear momentum is conserved.

2.- Rotational symmetry

Performing a rotation of the system by an angle δϕ, as shown in Fig. 2, a
function Ψ(r) is transformed to Ψ(r + a). As seen in the Figure, it is a = δϕ rsinθ

and the relation among the vectors a, δϕ and r is

a = δϕ× r

Calling
F (r) = Ψ(r + a)

one gets
Ψ(r) = F (r − a) = F (r)− a · ∇F (r) + · · ·

Performing a Taylor expansion as,

F (x + ∆x, y + ∆y, z + ∆z) =

F (x, y, z) +
∂F (x, y, z)

∂x
∆x +

∂F (x, y, z)

∂y
∆y +

∂F (x, y, z)

∂z
∆z + · · · (10)
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Figure 2: Angle δϕ corresponding to the rotation of the system and the relation
among the radius �r, the radius increment �a and the angle increment δϕ.

one gets,
F (r + ∆r) = F (r) + ∆r · ∇F (r) + · · ·

With δϕ infinitesimal it is,

Ψ(r)− F (r) = −(δϕ× r) · ∇F (r) = −δϕ · (r ×∇F (r))

and replacing momenta by the corresponding operators one gets,

p =
�
i
∇ =⇒ r ×∇ =

i

�r × p =
i

�L

Finally one obtains,

Ψ(r) = F (r)− i

�δϕ · LF (r) =

�
1− i

�δϕ · L
�

F (r)

For a finite angle ϕ one defines a small angle by using δϕ = ϕ/n, where n is a large
number. Rotating n times, i. e. applying the rotation operator n times, and in the
limit of n = ∞, one gets,

Ψ(r) = lim
n→∞

�
1− i

�
ϕ · L

n

�n

F (r)

Since the Euler’s number e is

e = lim
n→∞

(1 + 1/n)n

one can write
Ψ(r) = e−

i
� ϕ·L

F (r) = e−
i
� ϕ·LΨ(r + a)
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Therefore the rotation operator is

UR = e−
i
� ϕ·L

and one gets
Ψ(r + a) = U

−1
R Ψ(r)

If the Hamiltonian is rotational invariant

HΨn(r + a) = EnΨ(r + a) = EnU
−1
R Ψ(r) = U

−1
R HΨ(r)

URHΨn(r + a) = URHU
−1
R Ψ(r) = HΨ(r)

[H,UR] = 0 =⇒ [H, L] = 0

That is, if there is rotational invariance, then the angular momentum is conserved.

3.- Parity symmetry

The parity operator π̂ is defined as,

π̂|x� = |− x�

it is π̂
† = π̂ (exercise) The eigenvalues of the parity operator are obtained as,

π̂|Ψλ� = λ|Ψλ� =⇒ π̂
2|Ψλ� = λ

2|Ψλ�

since
π̂

2|x� = |x�

one gets
λ

2|Ψλ� = |Ψλ� =⇒ λ = ±1

in x-space it is
�x|π̂|Ψλ� = �−x|Ψλ� = Ψλ(−x) = λΨλ(x)

Ψλ(x) =

�
even, λ = 1
odd, λ = −1

If [H, π̂]=0, as it happens with potentials with reflection symmetry, parity is con-
served and λ is a good quantum number.

Sum of angular momenta

We will here analyse the possible angular momenta values of a two-particle sys-
tem. The angular momenta of the particles are L1 and L2 and the total angular
momentum is L = L1+L2. The components L̂x, L̂y, L̂z of L satisfy the conmutation
relations

[L̂2
, L̂i] = 0 (i = x, y, z)

[L̂x, L̂y] = i�L̂z, [L̂y, L̂z] = i�L̂x, [L̂z, L̂x] = i�L̂y

and the same for L1 and L2.
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Besides, since the degrees of freedom of the particles are independent of each
other one also has,

[L̂1, L̂2] = 0, [L̂2
, L̂1] = [L̂2

, L̂2] = 0

The eigenvectors corresponding to these operators are given by

L̂2
1|l1m1� = �2

l1(l1 + 1)|l1m1� ; L̂1z|l1m1� = �m1|l1m1�
L̂2

2|l2m2� = �2
l2(l2 + 1)|l2m2� ; L̂2z|l2m2� = �m2|l2m2�

L̂2|lm� = �2
l(l + 1)|lm� ; L̂z|lm� = �m|lm�

|l1 − l2| � l � l1 + l2, m = m1 + m2

−li � mi � li, −l � m � l

Not all the quantum numbers related to these operators can be used to label the
states. In other words, not all of them can be taken as good quantum numbers. To
see the reason for this we will analyse the behaviour of conmuting operators.

Given two operators and their eigenstates as

Â|α� = a|α� and B̂|β� = b|β�

and assuming that they conmute, i. e. [Â, B̂] = 0, then they have common eigen-
values (see Homeworproblems 1), i. e.,

Â|αβ� = a|αβ�, B̂|αβ� = b|αβ�

Therefore one cannot choose as quantum numbers to label simultaneously the
states the eigenvalues of, e. g., L̂2

1, L̂1z, L̂2x and L̂2z, since these two last operators
do not conmute with each other. But there are many combinations one can choose.
For instance, one can choose the eigenvalues of L̂2

1, L̂1x, L̂2
2, L̂2x. However, it is

standard in Quantum Mechanics to choose as quantum numbers the eigenvalues of
the z-component of all angular momenta. Therefore the standard choose (which
corresponds to all existing Tables of angular momentum coefficients) is L̂2

1, L̂1z,
L̂2

2, L̂2z or L̂2
1, L̂2

2, L̂2, L̂z, i.e. the standard eigenvectors used to label the angular
momenta are

|l1m1l2m2� or |l1l2lm�
and, therefore, the standard projectors are

�

l1m1l2m2

|l1m1l2m2��l1m1l2m2| = Î or
�

l1l2lm

|l1l2lm��l1l2lm| = Î

One can write the vector in one representation in terms of the other representation,
for instance

|l1m1l2m2� =
�

lm

|l1l2lm��l1l2lm|l1m1l2m2�

The number �l1m1l2m2|lm� = �l1l2lm|l1m1l2m2� is real and is called Clebsch-Gordan
coefficient.

|l1m1l2m2� =
�

lm

�l1m1l2m2|lm�|l1l2lm� (11)
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and due to the orthonormality of the basis elements

|l1l2lm� =
�

m1m2

�l1m1l2m2|lm�|l1m1l2m2� (12)

If the Hamiltonian corresponding to the two-particle system is spherically sym-
metric then the eigenstates of the Hamiltonian can be labeled by the eigenvalues of
the angular momenta shown above.

Symmetry properties of the Clebsch-Gordan coefficient

The Clebsch-Gordan coefficient can best be written in terms of the 3-j symbol
defined as �

l1 l2 l

m1 m2 −m

�
=

(−1)l1−l2+m

√
2l + 1

�l1m1l2m2|lm�

with the properties that

1.

�
l1 l2 l

m1 m2 m

�
=

�
l2 l l1

m2 m m1

�
=

�
l l1 l2

m m1 m2

�

2.

�
l1 l2 l

m1 m2 m

�
= (−1)l1+l2+l

�
l2 l1 l

m2 m1 m

�

3.

�
l1 l2 l

−m1 −m2 −m

�
= (−1)l1+l2+l

�
l1 l2 l

m1 m2 m

�

4. m1 + m2 −m = 0

6-j symbols
In the sum of three angular momenta one can choose the partition

J = j1 + j2 + j3 = J12 + j3 = j1 + J23

where
J12 = j1 + j2, J23 = j2 + j3

One can write the basis vector in one representation in terms of the other represen-
tation as

|(j1j2)J12j3; JM� =
�

J23

�j1(j2j3)J23; J |(j1j2)J12j3; J�|j1(j2j3)J23; JM�

The symmetry properties of the expansion coefficient can best be seen by introducing
the 6-j symbol as

�j1(j2j3)J23; J |(j1j2)J12j3; J�

= (−1)j1+j2+j3+J
�

(2J12 + 1)(2J23 + 1)

�
j1 j2 J12

j3 J J23

�
(13)
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which is a real number (therefore it is the same for �(j1j2)J12j3; J |j1(j2j3)J23; J�).
The 6-j symbol does not change if two columns are inter changed, for instance

�
j1 j2 J12

j3 J J23

�
=

�
j1 J12 j2

j3 J23 J

�

The angular momentum triangular relation must be satisfied for (j1, j2, J12), (j1, J, J23),
(j3, j2, J23) and (j3, J, J12). Thus, e.g.,

�
1/2 1/2 0
1/2 1/2 2

�
= 0

since 1/2 + 1/2 < 2
9-j symbols
In the case of 4 angular momenta

J = j1 + j2 + j3 + j4

one can write, e.g.,
J = J12 + J34 = J13 + J24

where J12 = j1 + j2, J34 = j3 + j4, J13 = j1 + j3 and J24 = j2 + j4.
One can thus write

|(j1j3)J13(j2j4)J24; JM� =
�

J12J34

�(j1j2)J12(j3j4)J34; J |(j1j3)J13(j2j4)J24; JM�

×|(j1j2)J12(j3j4)J34; J� (14)

and the 9-j symbol is defined by,

�(j1j2)J12(j3j4)J34; J |(j1j3)J13(j2j4)J24; J�

=
�

(2J12 + 1)(2J34 + 1)(2J13 + 1)(2J24 + 1)






j1 j2 J12

j3 j4 J34

J13 J24 J




 (15)

which is also a real number.
The symmetry properties of the 9-j symbols are

1. Any permutation of rows and columns does not change the 9-j symbol except
the sign, which is plus if the permutation is even and (−1)S, where S is the
sum of all angular momenta, if the permutation is odd.

2. The 9-j symbol does not change under a reflection about either diagonal.


